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Abstract:We propose and investigate the application of alternative enriched test spaces in the discontinuous

Petrov–Galerkin (DPG) finite element framework for singular perturbation linear problems,with an emphasis

on 2D convection-dominated diffusion. Providing robust L2 error estimates for the field variables is consid-

ered a convenient feature for this class of problems, since this normwould not account for the large gradients

present in boundary layers. With this requirement in mind, Demkowicz and others have previously formu-

lated special test norms, which through DPG deliver the desired L2 convergence. However, robustness has
onlybeenverified throughnumerical experiments for tailored test normswhichareproblem-specific,whereas

the quasi-optimal test norm (not problem specific) has failed such tests due to the difficulty to resolve the opti-

mal test functions sought in the DPG technology. To address this issue (i.e. improve optimal test functions

resolution for the quasi-optimal test norm), we propose to discretize the local test spaces with functions that

depend on the perturbation parameter ϵ. Explicitly, weworkwith B-spline spaces defined on an ϵ-dependent
Shishkin submesh. Two examples are run using adaptive h-refinement to compare the performance of pro-

posed test spaces with that of standard test spaces. We also include a modified norm and a continuation

strategy aiming to improve time performance and briefly experiment with these ideas.
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1 Introduction

1.1 DPG Fundamentals

Suppose we have an abstract variational problem: find u ∈ U such that

b(u, v) = ℓ(v) for all v ∈ V

where both trial space U and test space V are Hilbert spaces, b( ⋅ , ⋅ ) : U × V → ℝ is a bilinear continuous
functional that satisfies the inf-sup condition, and ℓ ∈ V 󸀠.

In this non-symmetric functional setting (i.e. U may be different from V ), we define the energy norm

‖ ⋅ ‖E on U through the bilinear form b and the chosen norm on V , ‖ ⋅ ‖V , as follows:

‖u‖E = sup
v∈V

|b(u, v)|
‖v‖V

. (1.1)
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If we define an operator B : U → V 󸀠 by Bu := b(u, ⋅ ), then (1.1) is equivalent to

‖u‖E = sup
v∈V

|⟨Bu, v⟩|
‖v‖V

= ‖Bu‖V 󸀠 .

1.1.1 The Ideal DPG

The ideal Discontinuous Petrov–Galerkin (DPG) method is a minimum residual method that delivers the best

approximation error in the energy norm, which is the same as minimizing the residual in the dual test space

norm; that is, given a discrete trial subspace U h ⊂ U with dimension Nh, if u ∈ U is the exact solution, the

ideal DPG solution uh ∈ U h
satisfies

‖u − uh‖E = inf

wh∈U h
‖u −wh‖E

= inf

wh∈U h
‖B(u −wh)‖V 󸀠

= inf

wh∈U h
‖ℓ −Bwh‖V 󸀠 . (1.2)

Now, let RV : V → V 󸀠 be the Riesz map of V associated to norm ‖ ⋅ ‖V . Then (1.2) turns into

‖u − uh‖E = inf

wh∈U h
‖R−1V (ℓ −Bwh)‖V . (1.3)

It is shown in [8] how after working out the minimization in (1.3), the ideal DPG methodology corresponds

to the following automatically stable¹ Petrov–Galerkin formulation: find uh ∈ U h
such that

b(uh , vh) = ℓ(vh) for all vh ∈ V h
:= TU h ⊂ V , (1.4)

with T : U → V being the trial-to-test map, defined by T := R−1V B. The functions living in V h
are referred

to as the optimal test functions.
By Babuška’s theorem, the following stability estimate holds for the ideal DPG [8]:

‖u − uh‖U ≤
M
γh

inf

wh
‖u − wh‖U ≤

M
γ
inf

wh
‖u − wh‖U , (1.5)

whereM > 0 is the continuity constant of bilinear functional b, and γh is its discrete inf-sup constant. When

the trial space is equipped with the energy norm, it can be shown that (by design) M = 1 and γ = 1, where γ
is the inf-sup constant in the continuous setting (therefore retrieving (1.2)).

1.1.2 DPG in Practice

Optimal test functions computation (including the inversion of the Riesz mapRV ) is achieved by solving the

auxiliary variational problem

{
v = Tuh ∈ V ,

(v, δv)V = b(uh , δv), δv ∈ V .

(1.6)

This infinite-dimensional problem is approximated with a finite-dimensional enriched test space V r ⊂ V

(with dimension Nr ≥ Nh). The stability of the ideal DPG is carried over to the practical DPG whenever there

exists a Fortin operator Fr : V → V r
, which must satisfy appropriate orthogonality and continuity condi-

tions [8]. Let Cr be the continuity constant of Fr; then estimate (1.5) becomes

‖u − uh‖U ≤
CrM
γ

inf

wh
‖u − wh‖U . (1.7)

1 The discrete inf-sup constant is bounded below by the continuous one, γh ≥ γ.
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The only modification to (1.4) is to replace the trial-to-test operator by its counterpart into the enriched test

space Tr := R−1V rB, whereR−1V r is the (Bubnov–)Galerkin approximation ofR−1V with V r
. In order to carry out

such an approximation, we begin by taking a basis of the enriched test space {vrk}
Nr
k=1 and one for the trial

space {ui}
Nh
i=1. Equation (1.6) yields the following algebraic problem:

Ggi,opt = Bi , i = 1, . . . , Nh ,

where gi,opt is the vector of coefficients of vi,opt = Truhi in the enriched test space basis, Bi is the i-th column

of the stiffness matrix B and G is the Gram matrix of V r
. The coefficients of B and G are defined by

Bji := b(uhi , v
r
j ), Gkj := (vrj , v

r
k)V .

Hence, the near-optimal test functions {vi,opt}
Nh
i=1 are simply

vi,opt =
Nr

∑
k=1
(gi,opt)kvrk , i = 1, . . . , Nh , (1.8)

In practice, unless we wish to explicitly compute the near-optimal test functions, the approximation to (1.4)

is set as an equivalent mixed formulation, where the solution is obtained without explicit implementation

of (1.8). For details see [9]. If the DPG solution is expressed as uh = ∑ uhi di, its coefficient vector d is then the
solution to the discrete problem

BTG−1Bd = BTG−1l,

with lk := ℓ(vrk). It is important to mention that matrices G and BTG−1B are Hermitian positive definite and for

broken test spaces, introduced later, they become also sparse.

1.2 The Optimal Test Norm

If we wish to minimize the error in a user-prescribed norm, a question arises when looking at (1.4): Which

test norm should be defined on V to make that happen?

In [20] Zitelli, Muga, Demkowicz, Gopalakrishnan, Pardo and Calo introduced the concept of the optimal
test norm (a notion of optimality that must not be confused with that of the optimal test functions), which

we explain here. Given a norm on our trial space ‖ ⋅ ‖U , and under the assumption that conjugate operator

B󸀠 : V 󸀠󸀠 ∼ V → U 󸀠 is injective, the so called optimal test norm is defined by

‖v‖V ,opt
:= sup

u∈U

|b(u, v)|
‖u‖U

.

Recalling (1.1), we deduce that the use of this norm on the test space implies (see [20, Proposition 2.1])

‖u‖U = ‖u‖E ,

which, in other words, says that if we use the ideal DPG methodology with the optimal test norm, then we

can minimize the solution error in any trial norm ‖ ⋅ ‖U we choose.

However, in practical implementations of the method, we encounter some issues that place limitations

on that goal. In order to address those limitations, we need to define what we understand by robustness in

the present work, and next we focus on the model problem to be later studied numerically.

1.3 Robustness

In the case of singular perturbation problems, we consider a discretizationmethod to be robust if the stability
constant C relating the actual approximation error and the best approximation error is independent of the

perturbation parameter (ϵ):
‖u − uh‖U (1) ≤ C inf

wh∈U h
‖u −wh‖U (2) ,

with norms ‖ ⋅ ‖U (1) and ‖ ⋅ ‖U (2) being ideally the same [11]. For this (‖ ⋅ ‖U (1) = ‖ ⋅ ‖U (2) = ‖ ⋅ ‖U ) it must hold

that the constants in (1.7) (that is, the bounding constants of b and Fr) are all independent of ϵ.
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Here lies the challenge of singular perturbation problems. It is desired to be capable of varying the value

of ϵ, as in real applications this number ranges several orders of magnitude, usually in much smaller scales

than the rest of the data involved. Thus, it is important to show independence of ϵ in the constants, in order
to have a method that suits a wide range of values of this perturbation parameter. Coming up with a method

that shows this independence is not an easy task, and although DPG is equipped with good tools to approach

the problem, there are some complications in the way that must be carefully handled in the process.

2 Choice of the Norm
With the purpose of illustrating the challenges present in the solution of singular perturbation problems

through DPG, we will describe a model problem and discuss its ultraweak variational formulation, the
functional setting, and explain the factors that intervene in the choice of the test norm, concerning both

mathematical and computational aspects.

2.1 Model Problem

For the sake of simplicity, we limit ourselves to the two-dimensional space. We will work with an important

singular perturbation model problem, the steady-state convection-dominated diffusion, briefly referred to as

“confusion” problem. Its strong form is stated as follows: find u : Ω → ℝ such that

{
−ϵ∆u + div(βu) = f in Ω,

u = u
0

on Γ,

where Ω ⊂ ℝ2 is a simply connected open set (a domain) with piecewise smooth boundary Γ, ϵ > 0 is the

diffusivity or perturbation parameter in this case, β is a divergence-free advection vector field (div β = 0) of
magnitude |β| = O(1), f ∈ L2(Ω) and u

0
∈ H 1

2 (Γ). Rewriting the second order partial differential equation as
a system of first order equations by introducing σ := ϵ∇u, we obtain

{{{
{{{
{

ϵ−1σ − ∇u = 0 in Ω,

−div(σ − βu) = f in Ω,

u = u
0

on Γ.

(2.1)

From (2.1) we can identify the differential operatorA acting on group unknown (σ, u):

A := (
ϵ−1 −∇
−div β ⋅ ∇

) .

2.2 Ultraweak Variational Formulation

In order to solve (2.1) weakly, we can relax both of the equations in the system so that the required regularity

of the solution is minimal. Let us introduce a vector-valued test function τ for the first line, and a scalar-

valued test function v for the second one. In the process of relaxing the second one, a term involving the

normal component of σ − βu arises. By setting v = 0 on the boundary, such a term vanishes. Thus, the ultra-

weak variational formulation is the one brought up by defining the following bilinear and linear functionals

on u = ( σu ), and v = ( τv ):

b(u, v) := (u,A∗v)
Ω
, (2.2)

ℓ(v) := ⟨τ ⋅ n, u
0
⟩
Γ
+ (f, v)

Ω
, (2.3)

where

A∗v = (
ϵ−1 ∇
div −β ⋅ ∇

)(
τ
v
) = (

ϵ−1τ + ∇v
div τ − β ⋅ ∇v

) ,
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the pairing ( ⋅ , ⋅ )
Ω
is the L2(Ω) inner product (which generates norm ‖ ⋅ ‖

Ω
), and ⟨ ⋅ , ⋅ ⟩

Γ
denotes the duality

pairing of boundary energy spaces H− 12 (Γ) × H− 12 (Γ). Having reduced the regularity in the trial variables,

for (2.2) to make sense we do require some regularity in the test functions, namely, τ ∈ H(div, Ω) and
v ∈ H1(Ω) with v = 0 on Γ (equivalently, v ∈ H1

0

(Ω)). Notice that because the normal trace of τ, i.e. (τ ⋅ n)|
Γ
,

lives in Sobolev space H− 12 (Γ), the first term in the linear functional (2.3) is well defined.

Notice that in this formulation u and σ come from an L2 space, which is a very favorable situation in

the “confusion” problem, because the large gradients (caused by the steep boundary layers present in the

solutions to this equation) will not influence the measure of the error in the chosen L2 norm [11].

Additionally, notice that for this formulation the optimal test norm is simply

‖v‖V ,opt
= ‖A∗v‖U = ‖A∗v‖Ω .

Because of this identity, we also call this norm the adjoint-operator norm.
An alternative to the adjoint-operator norm is the adjoint-graph norm or quasi-optimal norm:

‖v‖2V ,qopt

:= ‖A∗v‖2
Ω

+ η(‖τ‖2
Ω

+ ‖v‖2
Ω

), (2.4)

where η is a scaling coefficient. Assume that operatorA∗ is bounded below, i.e.²

‖A∗v‖2
Ω

≥ α‖v‖2
Ω

for all v = (τ, v) ∈ H(div, Ω) × H1

0

(Ω).

We have trivially

‖v‖V ,opt
≤ ‖v‖V ,qopt

,

and

‖v‖2V ,opt

≤ ‖A∗v‖2
Ω

+
η
α
‖A∗v‖2 = (1 +

η
α)
‖A∗v‖2

Ω

.

With

η
α = O(1), the optimal norm and the adjoint-graph norm are robustly equivalent and so are the cor-

responding energy norms. The ideal DPG method with the adjoint-graph test norm no longer delivers

the L2 projection, but the method is robust in the L2 norm.

2.3 Broken Test Spaces

Let Ωh be a non-overlapping partition of Ω into open elements with Lipschitz boundary, so that

Ω̄ = ⋃{K̄ : K ∈ Ωh},

and Γh = ⋃{∂K : K ∈ Ωh} denotes the mesh skeleton. Setting up a variational formulation with broken test
spaces is a two step process. In the first step, boundary conditions imposed on the test space are removed,

giving as a result newboundary unknowns. In the second stepweproceed to actually break the test functions,
replacing the usual energy spaces defined on Ω with spaces defined elementwise as follows (for details on

this process see [9]):

H1(Ωh) := {v ∈ L2(Ω) : v|K ∈ H1(K), K ∈ Ωh},

H(div, Ωh) := {τ ∈ L2(Ω) : τ|K ∈ H(div,K), K ∈ Ωh}.

The adoption of broken test spaces is what adds the discontinuous nature to DPG. It is easy to see that the
broken spaces contain the classical energy spaces:H1(Ω) ⊂ H1(Ωh),H(div, Ω) ⊂ H(div, Ωh). From (2.1), now

multiplying each line by a vector-valued broken test function τ and a scalar-valued broken test function v
and integrating by parts we obtain the broken ultraweak variational formulation. In this new formulation,

additional unknowns are included to account for reproducing the problem when only testing with functions

from the classical test spaces:

(1) trace û ∈ H 1

2 (Γh) (satisfying the boundary condition û = 0 on Γ), which represents the skeleton values of
“density” u,

(2) flux σ̂n ∈ H−
1

2 (Γh) which represents the normal trace of net flux βu − σ across the mesh skeleton.

2 By the Closed Range Theorem for closed operators [17, Remark 5.19.1] the operator A is also bounded below with the same

constant α.
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The bilinear form and linear form of this variational formulation are

b((u, û), v) = (u,A∗v)
Ωh + ⟨σ̂n , v⟩Γh − ⟨τ ⋅ n, û⟩Γh ,

ℓ(v) = ⟨τ ⋅ n, û
0
⟩
Γh + (v, f)Ωh ,

where v ∈ V = H(div, Ωh) × H1(Ωh) and (u, û) ∈ U = L2(Ω) × L2(Ω) × H− 12 (Γh) × H
1

2 (Γh) are groupvariables,
v = (τ, v), u = (σ, u) and û = (σ̂n , û). Moreover, û0 ∈ H

1

2 (Γh) is a lift into the interior skeleton of the boundary
values u

0
. Finally, we are using the pairings on the mesh and the skeleton defined by

( ⋅ , ⋅ )
Ωh := ∑

K∈Ωh

( ⋅ , ⋅ )K (this one induces norm ‖ ⋅ ‖Ωh ),

⟨ ⋅ , ⋅ ⟩
Γh := ∑

K∈Ωh

⟨ ⋅ , ⋅ ⟩∂K.

Now we can see how the optimal test norm for this problem looks like. If our norm on trial space U is

‖(u, û)‖2U := ‖σ‖2
Ω

+ ‖u‖2
Ω

+ ‖σ̂n‖2
H− 1

2 (Γh)
+ ‖û‖2

H
1

2 (Γh)
,

then, according to [16] the optimal test norm is

‖v‖2V ,opt

= ‖A∗v‖2
Ωh
+ ‖(τ ⋅ n)|

Γh‖
2

(H
1

2 (Γh))󸀠 + ‖v|Γh‖2(H− 1

2 (Γh))󸀠 . (2.5)

Finally, in order to discretize this broken variational formulation, we need discrete subspaces not only

for the field variables in L2 but for the trace and flux on the mesh skeleton. Then we need to choose finite-

dimensional subspaces Yp ⊂ L2(Ω), Yp ⊂ L2(Ω), V̂p ⊂ H− 12 (Γh) and Ŵp ⊂ H 1

2 (Γh) to form the trial discrete

subspace U h
.

2.4 Localization of the Test Norm

For a simpler test norm, we find breaking the test spaces computationally very useful, because matrix G
becomes block diagonal, with each block corresponding to an element of the mesh. Then the “inversion”

of G can be performed elementwise, and thus we also can compute an element contribution for the DPG stiff-

ness matrix BTG−1B, which can be assembled globally in the same fashion as in any Galerkin finite element

code. This is not the case with norm (2.5), because the skeleton terms involve jumps in the functions across

edges, therefore the computation of the norm is no longer fully local.

Instead of attempting to derive an optimal test normcorresponding to the broken variational formulation,

we can opt for using the quasi-optimal adjoint-graph norm corresponding to the original formulation (2.4).

Due to the presence of the L2 term, these adjoint-graph norm extends to the broken test space (then it is local-
izable, contrary to norm (2.5)). The fundamental result in [3] shows that the broken variational formulation

remains stable with the stability constant of the same order as α.

2.5 Discrete Stability with the Quasi-Optimal Norm

In summary, with the localizable adjoint-graph norm and broken test spaces, we end up with the following

estimate for the problem at hand:

‖σ − σh‖2
Ω

+ ‖u − uh‖2
Ω

+ ‖σ̂n − σ̂n,h‖2
flux

+ ‖û − ûh‖2
trace

≤ C{ inf
ςh∈Yp
‖σ − ςh‖2

Ω

+ inf

uh∈Yp
‖u − wh‖2

Ω

+ inf

̂ςn,h∈V̂p
‖σ̂n − ς̂n,h‖2

flux

+ inf

ŵh∈Ŵp
‖û − ŵh‖2

trace

},

where ‖ ⋅ ‖
flux

and ‖ ⋅ ‖
trace

are special norms for fluxes and traces implied by the quasi-optimal test norm,

stability constant C is of order 1 and independent of ϵ, and the term inside the brackets represents the best

approximation error of u in space U h
. The good news is that we control fields u, σ in the desired L2 norm



J. Salazar et al., Alternative Enriched Test Spaces | 609

in a robust way. The bad news is that, in the process of breaking test functions, we have introduced new

unknowns which must be measured in a norm implied by our quasi-optimal test norm, which we have to

accept. For a longer discussion on the subject, see [3].

2.6 Quasi-Optimal Test Norm vs Robust Test Norm

The optimal test functions can be seen as the solutions to the dual problem A∗v = u with homogeneous

boundary conditions [8], then it is no surprise that the optimal test functions develop boundary layers and

their resolution is difficult. There have been multiple developments concerning the design of norms that

produce test functions which are easier to approximate. Demkowicz and Heuer [11] present the analysis

of robustly designed norms for the “confusion” problem, which involve mesh dependent coefficients and

weighted L2 norms for some terms (such weights are data dependent). Later, Chan, Heuer, Bui-Thanh and

Demkowicz [4] showed that by setting appropriate boundary conditions the use of weights is unnecessary,

resulting in the following robust test norm (specific to the “confusion” problem):

‖v‖2V ,D := ‖div τ‖2
Ωh
+ ϵ‖∇v‖2

Ωh
+ ‖β ⋅ ∇v‖2

Ωh
+ ‖Cττ‖2

Ωh
+ ‖Cvv‖2

Ωh
, (2.6)

Cv|K := min{√
ϵ
|K|

, 1}, (2.7)

Cτ|K := min{√
1

ϵ
,√

1

|K|
} for allK ∈ Ωh , (2.8)

where |K| is the area of element K. In Section 4, norm (2.6) will be commonly referred to as the robust
test norm. The robust test norm separates v and τ so the local Gram matrix becomes block-diagonal. The

mesh dependent factors eliminate dominance of diffusion by reaction in (2.6) which results in optimal test

functions with “weak” boundary layers that can be easily resolved.

Although these norms have robust features, having to design a norm for each specific boundary value

problem is less desirable than using the optimal (or quasi-optimal) norm; which is a general concept that

can be applied on any problem given in its ultraweak variational formulation. However, we can try a simpler

compromise approach.

Due to the theoretical difficulty and the lack of generality that these designed norms represent, and

despite their virtues, we wish to keep trying the more general adjoint-graph norm but looking for another

strategy to ease the resolution of the optimal test functions. The strategy of our choice is to implement

boundary-layer-adapted test spaces, as it is explained in detail in Section 3. We will later compare the

numerical performance of the distinct norms introduced above and draw some conclusions from the results.

2.7 Testing New Norms and Strategies

Due to the difficulty to solve problems with ϵ < 10−4 we explored additional strategies.
The first strategy is to define a modified test norm. With a big simplification of the stability analysis

provided in [4, 11], we adopt the mesh-dependent coefficient in the quasi-optimal norm, and replace the

small perturbation parameter ϵ with a value depending on the element size h. For each element, define

ϵ∗ := max{ch, ϵ}, with c being a positive constant (in our examples set to c = 10−2). Thus, our modified
adjoint-graph norm (referred to as the EPS STAR norm in the plots for the results) is defined as

‖(τ, v)‖2V ,eps−star :=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1

ϵ∗
τ + ∇v
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

Ωh

+ ‖div τ − β ⋅ ∇v‖2
Ωh
+ ‖v‖2

Ωh
,

where we have expanded (2.4), with η = 1 (although removing the extra ‖τ‖ term), and incorporated the new

coefficient ϵ∗.
Another proposed strategy which we briefly explore numerically could be interpreted as a continuation

technique with respect to parameter ϵ. This strategy is understood in the context of adaptive refinements
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process. The motivation is to allow for an approximate layer-capturing mesh to quickly develop. In order to

do this, we link ϵ to the previous iteration residual, so that it adopts a more lenient value when the residual

is high and progressively approaches its original value (ϵ
orig

) as the residual decreases. At each refinement

we replace ϵ with ϵi defined by
ϵi = max{

1

2

(cρi−1 + ϵi−1), ϵorig},

where ϵi is the perturbation value used for refinement i (with i = 1, 2, . . .) , ρi−1 = ‖Buhi−1 − ℓ‖V 󸀠 is the
residual obtained after solving the previous refinement step, c is a positive constant and we set ρ

0
= 0 and

ϵ
0
= ϵ

orig
.

3 Test Space Discretization
Wewant to choose appropriate finite-dimensional subspacesU h ⊂ U andV r ⊂ V for implementing theDPG

methodology. Though we could generalize this exercise to triangles, for the purpose of the current study

we limit ourselves to working with quadrilateral elements only. As explained in the previous section, the

most challenging part of applying DPG to the “confusion” problem is to accurately resolve the optimal test

functions. Then, we decide to discretize the trial spacewith classical polynomial spaces, but for the test space

the idea is to use specially tailored functions, that may account for the eventual boundary or internal layers

generated by the convection-dominated physics of the problem.

We will employ the first exact sequence of polynomial spaces for the Nédélec quadrilateral element, and

for that purpose the following definitions are required. Let I ⊂ ℝ be the unit open interval (0, 1). Thus K̃ := I2

represents the unit square, which is the master element for every element in our partition. We assume stan-

dard shape regularity assumptions avoiding shape degenerate elements. Consequently, for each element

K ∈ Ωh there is a diffeomorphic element map xK :

̄̃
K→ K̄ with nonsingular jacobian JK. For all energy

spaces of interest defined on K, there are well-known Piola maps that relate them to spaces defined over K̃

(see [12, 18]):

H1(K̃) ∋ ṽ 󳨃→ TgradK ṽ := ṽ ∘ x−1K = v ∈ H
1(K),

H(div, K̃) ∋ τ̃ 󳨃→ TdivK τ̃ := (det J−1K JK τ̃) ∘ x−1K = τ ∈ H(div,K),
L2(K̃) ∋ ũ 󳨃→ TKũ := (det J−1K ũ) ∘ x−1K = u ∈ L

2(K),

L2(K̃) ∋ σ̃ 󳨃→ TKσ̃ := (det J−1K σ̃) ∘ x−1K = σ ∈ L
2(K).

The conformity wanted in the subspaces makes possible to derive similar maps for the trace spaces,

where we can exploit the fact that H 1

2 (Γh) is formed by traces of H1(Ω) and H− 12 (Γh) contains the normal

traces of H(div, Ω). Clearly, Γh is the union of all the edges that exist in the mesh. One can show that pull-

backs of traces on an edge depend only on the restriction of element maps to the edge and therefore, they

are well defined, i.e. independent of which element map is being used. The inverse image of e through xKe is

denoted ẽ, with unit tangent tẽ. Hence, the Piola maps for the trace spaces correspond edgewise to

H
1

2 (Γh)
󵄨󵄨󵄨󵄨ẽ ∋ ũ 󳨃→ Ttr,grade ũ := ũ ∘ x−1Ke

= v ∈ H
1

2 (Γh)
󵄨󵄨󵄨󵄨e ,

H−
1

2 (Γh)
󵄨󵄨󵄨󵄨ẽ ∋ σ̃n 󳨃→ Ttr,dive σ̃n := (|JKe tẽ|−1σ̃n) ∘ x−1Ke

= σn ∈ H−
1

2 (Γh)
󵄨󵄨󵄨󵄨e .

These Piola maps are applied in the definition of the polynomial subspaces that will be used in the DPG

implementation. For any integers q
1
, q

2
≥ 0, andPq

1 (I)denoting the space of univariate polynomials defined

on I of degree up to q
1
, we define the tensor product polynomial space

Qq
1
,q

2 (K̃) := Pq
1 (I) ⊗ Pq

2 (I).

With these definitions, for some integer p ≥ 1 our discrete trial space for the broken ultraweak formulation is

chosen as follows:

U h
:= Yp × Yp × Ŵp × V̂p ⊂ L2(Ω) × L2(Ω) × H

1

2 (Γh) × H−
1

2 (Γh) = U ,
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where

Yp
:= {σ ∈ L2(Ω) : σ|K ∈ TK(Qp−1,p−1(K̃))2 for allK ∈ Ωh},

Yp
:= {u ∈ L2(Ω) : u|K ∈ TKQp−1,p−1(K̃) for allK ∈ Ωh},

Ŵp
:= {û ∈ C(∂Ωh) : û|e ∈ Ttr,grade Pp(ẽ) for all edges e ∈ ∂Ωh},

V̂p
:= {σ̂n ∈ L2(∂Ωh) : σ̂n|e ∈ Ttr,dive Pp−1(ẽ) for all edges e ∈ ∂Ωh}.

The shape functions used for these spaces are Legendre and integrated-Legendre (Lobatto) polynomials (for

the edges), and tensor products of those (for the quadrilaterals), as exposed in [13].

As explained above, when implementing DPG it is required to have an enriched test subspace V r
. Its

dimension (Nr) should be greater than or equal to the dimension of the discretized trial space (Nh); we call

obtaining V r
, enrichment. The most common enrichment strategy is p-enrichment, which entails raising the

polynomial degree to pr = p + ∆p, with ∆p ≥ 0. Should us want to adopt such a strategy, our discrete test

space would be

V r
L := Vpr

L ×W
pr
L ⊂ H(div, Ω

h) × H1(Ωh) = V ,

where

Vpr
L := {τ ∈ H(div, Ωh) : τ|K ∈ TdivK (Q

pr ,pr−1(K̃) × Qpr−1,pr (K̃)) for allK ∈ Ωh},

Wpr
L := {v ∈ H1(Ωh) : v|K ∈ TgradK Qpr ,pr (K̃) for allK ∈ Ωh}.

In the just defined spaces, the subscript L indicates that they are constructed using Legendre and Lobatto
polynomials. However, these test spaces are not so well suited for the “confusion” problem, as they do not

incorporate the perturbation parameter by any means, hence they hardly perceive the degenerate boundary

layers generated unless the element size is similar in magnitude to the parameter.

Alternatively, h- and hp-enrichment strategies have been studied recently, where the test space size is

increased by generating a submesh within each element and defining a discrete conforming space on that

submesh. Broersen, Dahmen and Stevenson [2] have rigorously proven stability of the DPG method for

transport equations (convection-reaction) using an hp-enrichment strategy. In their work they prove that

under a bounded refinement level of the element subgrids, and with fixed ∆p = 1, there exists a discrete

inf-sup constant that makes the practical DPG method stable for this problem. Bulding over this work, in [6]

Dahmen and Stevenson show a-posteriori error estimators and adaptive strategies that guarantee a fixed

error reduction rate for transport equations (fully proven for 1d, and partially for multiple dimensions).

Next, we are proposing alternative spaces that in some way account for the perturbation parameter,

aiming to get a higher solution quality when resolving the optimal test functions for the “confusion” problem.

3.1 Design of Enriched Test Functions

Shishkin [19] introduced the idea of a piecewise-uniform mesh that is constructed a priori based on the sin-

gular perturbation parameter. This strategy has been widely adopted and used along withmultiple methods,

to the point where this meshes are now called Shishkin meshes. Aiming for an hp-enrichment strategy more

specifically designed for problems with boundary layers, and given existent anecdotal evidence of its utility

with other numerical methods (see, for instance, [14] and [15]), we propose to enrich the test space with

B-splines defined over a Shishkin submesh.

3.1.1 Shishkin Mesh

The application of Shishkin meshes for the implementation of singularly perturbed problems with DPG was

first made in [16]. In that work, each quadrilateral element was partitioned into a 3×3 grid, giving a spe-

cial width to the outermost subelements, as shown in Figure 1. The resulting test functions are especially

favorable for capturing boundary layers in hp-finite element methods, therefore it was a reasonable heuristic

choice to adopt the idea for the local problem of solving DPG’s optimal test functions.
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Figure 1: Shishkin subgrid in each element (showing physical dimensions).

The referencementioned above [16] used a locally conforming space of Bernstein polynomials, enforcing

C0 continuity across subelements of the Shishkin mesh. We are trying a slight variation of this approach,

which will help reducing local cost and will allow us to assess whether higher-continuity local spaces can be

of help for better resolving the optimal DPG test functions.

3.1.2 B-Splines

B-splines are piecewise polynomial functions defined over an interval [a, b], that possess several properties
that have made them a successful tool both in numerical analysis and in computer graphics [5]. In order to

define a set of B-splines that may be used as shape functions, we are required to set an integer order m ≥ 0,
another integer n ≥ m + 1 that corresponds to the number of B-splines, and a set of parameters referred to

as the knot vector Ξ = {ξ
1
, . . . , ξn+m+1}, where a = ξ1 = ⋅ ⋅ ⋅ = ξm+1 < ξm+2 ≤ ⋅ ⋅ ⋅ ≤ ξn < ξn+1 = ⋅ ⋅ ⋅ = ξn+m+1 = b

are real numbers. Each different value in Ξ is called a knot (we order them increasingly and denote them ζl,
for l = 0, . . . , N), and the number of times that the same value is present in the vector is called multiplicity

(denotedMl, for l = 0, . . . , N). Using this knot vector,wedefine the i − th B-spline of orderm, Bm,i, as follows:

B
0,i(ξ) =

{
{
{

1 if ξi ≤ xi < ξi+1,
0 otherwise,

for m = 0,

Bm,i(ξ) =
ξ − ξi

ξi+m − ξi
Bm−1,i(ξ) +

ξi+m+1 − ξ
ξi+m+1 − ξi+1

Bm−1,i+1 for m ≥ 1,

for i = 1, 2, . . . , n. The formula above is known as the Cox–de Boor recursion formula [5]. Additionally, it

is known that continuity of B-splines across knots (that is, at ξ = ζl) is of order αl = m −Ml, l = 0, . . . , N.
Let α = {α

0
, . . . , αN} be the regularity vector and define the B-spline space Bm

α ([a, b]) := span{Bm,i}ni=1. Let
[a, b] = [0, 1], so we can simplify the notation: Bm

α = Bm
α ([0, 1]).

Buffa, Rivas, Sangalli and Vázquez [1] have introduced exact sequence B-spline spaces for tensor product

elements in two dimensions. The logic of such spaces follows the same ideas as for tensor product polynomial

spaces. In this case, the two-dimensional tensor product B-spline space on the master element is defined as

S
m

1
,m

2

α
1
,α

2

:= Bm
1

α
1

⊗ Bm
2

α
2

.

3.1.3 Specifications of the Enriched Test Space

In order to define a tensor product B-spline space based on the Shishkinmesh presented in Figure 1, we have

the following data:

N = N
1
= N

2
= 3,

ζ
0
= 0, ζ

1
= min{0.25, ϵprh−1}, ζ

2
= 1 −min{0.25, ϵprh−1}, ζ

3
= 1,

α = α
1
= α

2
= {−1, pr − 1, pr − 1, −1}, α − 1 = {−1, pr − 2, pr − 2, −1}.
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With this data and the definitions above, we can reconstruct the corresponding knot vectors and hence the

alternative enriched spaces

V r
B := Vpr

B ×W
pr
B ⊂ H(div, Ω

h) × H1(Ωh) = V ,

where

Vpr
B := {τ ∈ H(div, Ωh) : τ|K ∈ TdivK (S

pr ,pr−1
α,α−1 × S

pr−1,pr
α−1,α ) for allK ∈ Ω

h},

Wpr
B := {v ∈ H1(Ωh) : v|K ∈ TgradK S

pr ,pr
α,α for allK ∈ Ωh}.

In the subspaces above, the subscript B is for B-splines. Unlike the choice found in [16], we have a higher
continuity of the shape functions across knots and a smaller space, which reduces the computational com-

plexity at the element level. If we used C0 regularity at the knots, the dimension of V r
restricted to one ele-

mentwould be 2(3pr + 1)(3pr − 2) + (3pr + 1)2 = 3(3pr + 1)2 − 6(3pr + 1). In the currentworkwepropose an
enriched space which is piecewise of the same polynomial degree as the ones in the cited reference, but with

a local dimension of dimV r
B
󵄨󵄨󵄨󵄨K = 2(pr + 3)(pr + 2) + (pr + 3)

2 = 3(pr + 3)2 − 2(pr + 3), which is smaller than

the one above whenever pr > 1. On the other hand, if we see the dimension of the polynomial counterpart,

we have dimV r
L
󵄨󵄨󵄨󵄨K = 3(pr + 1)

2 − 2(pr + 1). Even though the main focus is not to analyze the computational

cost of this implementation, the fact that the spaces herein proposed are of a dimension much lower than

with other Shishkin-mesh-based enriched space is certainly an appealing feature. To illustrate this aspect,

we will later show results on computation time.

4 Numerical Results
Wepresent numerical results to twoproblems,withwhichwe compare the performance of discrete test spaces

based on Legendre and Lobatto polynomials (hereinafter referred to as “Lobatto” only) with B-splines.

For the implementation of the present method we used the Cox–de Boor formula for evaluation of

B-splines, and for numerical integrationwe used Gaussian quadrature over each sub-element of the Shishkin

mesh. Our test functions were mounted on top of the existing 2Dhp code infrastructure originally devel-

oped by Demkowicz [7]. This high order hp-finite element code was previously expanded to include DPG

capabilities.

Makinguseof the error estimator built into theDPGmethodologyat use [10],weuse the error convergence

of adaptive h-refinements as comparison criterion. We show numerical convergence results in the L2 norm
for u and σ.

For both problems, the domain is the unit square. The first one (Eriksson–Johnson) has constant advec-

tion vector and the second one (herein referred to as curved streamlines) variable advection vector. These

problems have boundary conditions more complicated than the one of the simplified presentation above,

and this fact may have important theoretical implications, but that does not interfere with the implementa-

tion of the test norms and spaces herein developed. For a deep analysis on the effects of boundary condition

see [4, 8].

For eachproblemwe initially compare threediffusivity values (ϵ = 10−2, 10−3, 10−4) showing the L2 error
evolution with respect to the total number of degrees of freedom (DOF). Additionally, we include evolution

with respect to time of computation.

Two polynomial degrees were used (p = 2, 3); enrichment values for Lobatto test spaces are ∆p = 0, 1, 2,
while for B-splines only ∆p = 0 is used. The initial mesh is a single quad element with homogeneous refine-

ments.

To provide a uniform picture of the refinement processes under different parameters (polynomial degree,

enrichment, ϵ) we limit results to 10

6

DOF, 10

4

seconds and 200 refinement steps.

Additionally, in order to explore the behavior of proposed EPS STAR norm, we analyze both problems

with a more demanding diffusivity ϵ = 10−5, extending our computing limits to larger values.
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Figure 2: Exact solution, Eriksson–Johnson problem, ϵ = 10−2.

4.1 Example 1: Eriksson–Johnson Problem

Consider the following convection-diffusion equation:

{
−ϵ∆u + ∇ ⋅ (βu) = f in Ω = (0, 1)2,

u = u
0

on Γ,

with β = (1, 0)T. The following manufactured solution corresponds to a homogeneous case (f = 0):

u(x, y) = e
r
1
(x−1) − er2(x−2)

e−r1 − e−r2
cos πy, r

1,2
=
−1√1 + 4ϵ2π2
−2ϵ

,

which develops a boundary layer next to the boundary at x = 1 (see Figure 2).
It is important to mention that the numbers shown in the legend labels, at the end of each data series, is

the refinement step corresponding to the last data point included in the graph.

For ϵ = 10−2, a somewhat “benign” problem (Figures 3 and 4), we see no big differences. With B-splines

(BSP in the labels) holding the same error at about the same number of DOF. However, when comparing

computation time, for p = 2 Lobatto with ∆p = 2 requires less time than B-splines; and for p = 3 Lobatto with
∆p = 0, 1 requires less time than B-splines.

Now for ϵ = 10−3 (Figures 5 and 6), p = 2 B-splines clearly provide better results both ways, error vs DOF
and error vs time. For p = 3, B-splines provide similar results to Lobatto with ∆p = 2.

With ϵ = 10−4 (Figures 7 and 8), we start to observe interesting behaviors. For Lobatto not all values of
∆p converge; they ( ∆p = 1, 2 for p = 2 and ∆p = 0, 2 for p = 3) fail to decrease the L2 error with subsequent
refinement steps.

Therefore, for this problem, we can argue B-splines provide better results than any Lobatto (p, ∆p com-

bination) set up.

In Figures 9 and 10 the L2 error to energy error ratio is shown. It is clear that B-splines tend to the same

value (close to the million DOF) across the tested ϵ values; whereas Lobatto does not clearly converge to

a single number and its values are at least an order of magnitude greater.

4.1.1 EPS STAR Norm

Figures 11 and 12 show that for this problem, the EPS STAR norm behaves very similarly to the robust norm,

except after the million DOF where robust norm with B-splines present a sudden error reduction. Regarding

this problem, quasi-optimal test norm shows a slightly better behavior (in particular B-splines)

At the same time, this verifies the improved behavior of B-splines under robust norm.
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Example1 ε= 10 -2  p=2

Δp=0 LOBATTO 73
Δp=1 LOBATTO 55
Δp=2 LOBATTO 35
Δp=0 BSP 34
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Δp=0 BSP 32

Figure 3: L2 error vs DOF, ϵ = 10−2, p = 2, p = 3.
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Figure 4: L2 error vs time, ϵ = 10−2, p = 2, p = 3.
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Figure 5: L2 error vs DOF, ϵ = 10−3, p = 2, p = 3.
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Figure 6: L2 error vs time, ϵ = 10−3, p = 2, p = 3.
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Figure 7: L2 error vs DOF, ϵ = 10−4, p = 2, p = 3.
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Figure 8: L2 error vs time, ϵ = 10−4, p = 2, p = 3.
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Figure 9: Ratio of L2 and energy norms, p = 2, ∆p = 0.
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Figure 10: Ratio of L2 and energy norms, p = 3, ∆p = 0.



J. Salazar et al., Alternative Enriched Test Spaces | 619

10 4 10 5 10 6

Total DOF

10 -4

10 -3

10 -2

10 -1

L2
 e

rr
or

Example1 = 10 -5  p=2

p=0 ROBUST BSP 36
p=0 ROBUST LOBATTO 65
p=0 EPS STAR BSP 21
p=0 EPS STAR LOBATTO 69

Figure 11: Comparison of EPS STAR norm with robust norm: L2 error vs DOF, ϵ = 10−5, p = 2.

10 1 10 2 10 3 10 4

Time

10 -4

10 -3

10 -2

10 -1

L2
 e

rr
or

Example1 = 10 -5  p=2

p=0 ROBUST BSP 36
p=0 ROBUST LOBATTO 65
p=0 EPS STAR BSP 26
p=0 EPS STAR LOBATTO 65

Figure 12: Comparison of EPS STAR norm with robust norm: L2 error vs time, ϵ = 10−5, p = 2.
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4.2 Example 2: Curved Streamlines

Consider the following problem:

{
−ϵ∆u + ∇ ⋅ (βu) = f in Ω = (0, 1)2,

u = u
0

on Γ

with

β = ∇(ex sin y) = ex(sin y, cos y)

and f, u
0
such that

u(x, y) = arctan(1 − |(x, y)|ϵ )

with inflowboundary at x = 0 and y = 0. The exact solution is shown in Figure 13, and the numerical solution

with final mesh is shown in Figure 14 (for illustration purposes).
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Figure 13: Exact solution, curved streamlines.

For this problem, B-splines and Lobatto (for all ∆p values) behave similarly. A few noticeable differences

appear for p = 2, where Lobatto with ∆p = 1 shows slower convergence for the ϵ = 10−3 problem (Figure 17).

And for the ϵ = 10−4 one (Figure 17) convergence stalls at about 3 × 105 DOF. Also in the ϵ = 10−4 case

(Figure 19), we observe a slightly better L2 error with B-splines at 106 DOF.
Time registers (Figures 16, 18, 20) are only available for ∆p = 0, and we observe no much difference,

with B-splines only slightly better in some cases but slightly worse in others.

In Figures 21 and 22 the ratio of L2 error for the field variables and the energy norm error is shown.

In both cases, B-splines approach the same value when close to 10

6

DOF, being this value a whole order

of magnitude lower than Lobatto polynomials. The ratio stays uniformly bounded from below, but not from

above, however it does converge.
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Figure 14: Numerical solution and final mesh for ϵ = 10−3, p = 3.

4.2.1 EPS STAR Norm

Results for p = 2 are shown in Figures 23 and 24. EPS STARnormbehaves considerably better than the robust

norm. At 2 million DOF B-splines reach an error close to 0.1 with the EPS STAR norm and 0.3 for the robust

norm. Corresponding values for Lobatto polynomials are 0.3 and 0.6. Also convergence over time is improved

with the EPS STAR norm, with B-splines trailing behind Lobatto.

With p = 3 (Figures 25 and 26) EPS STAR norm with B-splines observes improved convergence with

respect to time and DOF. By 2 × 106 DOF, B-splines with EPS STAR norm reaches less than half the L2 error
than B-splines with robust norm and even better than Lobatto polynomials. It must also be noted that

B-splines with EPS STAR norm shows the best behavior when accounting for the computational time.

4.2.2 Continuation Strategy

This strategywas briefly exploredwith Example 2, p = 2 and ϵ = 10−5. Constant cwas set to 10−3 and results
are shown in Figures 27 and 28 along with the corresponding results using the robust norm for comparison.

The continuation strategy presents slightly smaller error at 4 million degrees of freedom, however, a signifi-

cant improvement is observedwhen comparing computation time. The time it takes the Continuation strategy

to reach an L2 error under 10−2 is about 1

5

the time it takes the ROBUST norm (for B-splines).

It is important to highlight that continuation results are actually comparable only in the region where

ϵi has reached the ϵ
orig

value, indicated in the figures to the right of the thick vertical line near 8 × 10−3

L2 error (refer to Section 2.7 for details on this strategy). Although these results are by no means conclusive,

we consider this approach presents an interesting behavior, worth being communicated and more deeply

studied in the future.

5 Conclusions
Wehavepresentedalternative test spacesusingB-splines, aiming for robustness of theDPGmethodologywith

optimal test functions for singular perturbation problems. This has previously been numerically verified for

specificproblemsbyusing specifically tailorednorms;while the general (non-problemspecific)quasi-optimal
test norm has failed this purpose.
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Figure 15: L2 error vs DOF, ϵ = 10−2, p = 2, p = 3.
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Figure 16: L2 error vs time, ϵ = 10−2, p = 2, p = 3.
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Figure 17: L2 error vs DOF, ϵ = 10−3, p = 2, p = 3.
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Figure 18: L2 error vs time, ϵ = 10−3, p = 2, p = 3.
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Figure 19: L2 error vs DOF, ϵ = 10−4, p = 2, p = 3.
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Figure 20: L2 error vs time, ϵ = 10−4, p = 2, p = 3.
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Figure 21: Ratio of L2 and energy norms. p = 2, ∆p = 0.
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Figure 22: Ratio of L2 and energy norms. p = 3, ∆p = 0.
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Figure 23: Comparison of EPS STAR norm with robust norm: L2 error vs DOF, ϵ = 10−5, p = 2.
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Figure 24: Comparison of EPS STAR norm with robust norm: L2 error vs time, ϵ = 10−5, p = 2.
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Figure 25: Comparison of EPS STAR norm with robust norm: L2 error vs DOF, ϵ = 10−5, p = 3.
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Figure 26: Comparison of EPS STAR norm with robust norm: L2 error vs time, ϵ = 10−5, p = 3.
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Figure 27: Continuation strategy with robust norm results for comparison: L2 error vs DOF, p = 2. Remark: ϵ = 10−5 to the right
of the thick vertical line for continuation graph.
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Figure 28: Continuation strategy with robust norm results for comparison: L2 error vs time, p = 2. Remark: ϵ = 10−5 to the right
of the thick vertical line for continuation graph.
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When using the quasi-optimal test norm, robustness is automatically given by the DPG methodology (in

the ultraweak variational formulation), hence its importance. However, the difficulty shifts to the resolution

of the optimal test functions since they develop boundary layers [11].

In order to tackle this hurdle, we propose using a Shishkin sub-mesh and B-splines to discretize the test

space. Numerical results for two problems show B-splines to be a very suitable alternative to the commonly

used Legendre and Lobatto polynomials (simply referred to as ‘Lobatto’ only). B-splines results are at worst

similar to Lobatto, but much better in some cases (under adaptive refinements). To summarize the results we

recall the following findings:

∙ Regarding DOF, B-splines show better convergence under any of the tested scenarios (although several

were very similar to Lobatto).

∙ Regarding time, only for one test were Lobatto results (slightly) better than B-splines (∆p = 2 in Figure 4
left), whereas in a couple (Figures 6 and 8) B-splines were considerably better.

∙ Regarding the L2 error to energy error ratio, in both examples we saw B-splines converging (for three

different ϵ) to a constant value one order of magnitude smaller than that of Lobatto spaces, implying

a better control of the L2 error.
∙ Another remarkable outcome is that while for Lobatto test spaces we needed to explore several values

of ∆p according to each scenario, when using our alternative test spaces ∆p = 0 was a good choice in all
cases, therefore removing one variability factor in the method.

Recalling that the B-splines integration strategy herein used was rather non-optimal, leads us to believe

that under more efficient integration schemes the time saving could be substantial, and therefore achieving

a better overall performance than the conventional test space discretization.

We additionally proposed the EPS STAR norm (modified Adjoint Graph Norm) and a continuation strat-

egy, as means to improve the solution of the most demanding conditions here presented (Example 2 with

ϵ = 10−4, 10−5). They appear to have good behavior but certainly require further analysis and experimenta-

tion.
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